Skip to content
ADevGuide
Go back

What is MCP (Model Context Protocol)? Understanding the Differences

Discover the Model Context Protocol (MCP), a groundbreaking standard that bridges AI models with external data sources and tools. Learn how MCP differs from LLMs, AI agents, APIs, and other similar concepts in the AI ecosystem.

Table of Contents

Open Table of Contents

What is Model Context Protocol (MCP)?

Model Context Protocol (MCP) is an open-source protocol developed by Anthropic that provides a standardized way for Large Language Models (LLMs) to connect with external data sources, tools, and services. Think of it as a universal adapter that allows AI models to access information and capabilities beyond their training data.

Key Features of MCP

Why MCP Matters

Before MCP, each AI application had to implement custom integrations for every data source or tool. MCP solves this by providing a universal protocol, similar to how HTTP standardized web communication.

Without MCP:
AI App 1 → Custom Integration → Database
AI App 2 → Different Integration → Same Database
AI App 3 → Another Integration → Same Database

With MCP:
AI App 1 ↘
AI App 2 → MCP Server → Database
AI App 3 ↗

Understanding the AI Ecosystem

To fully grasp MCP, let’s understand the three key components of the modern AI ecosystem:

┌─────────────────────────────────────────────────────────┐
│                    AI Ecosystem                         │
├─────────────────────────────────────────────────────────┤
│                                                         │
│  ┌─────────────┐      ┌──────────┐      ┌───────────┐ │
│  │    LLM      │ ←──→ │   MCP    │ ←──→ │   Agent   │ │
│  │  (Brain)    │      │(Protocol)│      │(Executor) │ │
│  └─────────────┘      └──────────┘      └───────────┘ │
│                                                         │
│  • Processes      • Standardizes     • Orchestrates    │
│    language         communication      tasks           │
│  • Generates      • Connects to      • Makes           │
│    responses        data sources       decisions       │
│  • Understands    • Provides tools   • Executes        │
│    context        • Enables access     workflows       │
│                                                         │
└─────────────────────────────────────────────────────────┘

MCP vs LLM: Key Differences

Many people confuse MCP with LLMs. Let’s clarify the distinction:

What is an LLM?

A Large Language Model (LLM) is an AI model trained on vast amounts of text data to understand and generate human-like text. Examples include GPT-4, Claude, Gemini, and LLaMA.

LLM Characteristics:

MCP is NOT an LLM

MCP Characteristics:

Visual Comparison

┌──────────────────────────────────────────────────────────────┐
│                    LLM vs MCP                                │
├──────────────────────────────────────────────────────────────┤
│                                                              │
│  LLM (The Model)                 MCP (The Protocol)         │
│  ┌────────────────┐              ┌─────────────────┐        │
│  │                │              │                 │        │
│  │   Training     │              │  Standardized   │        │
│  │     Data       │              │  Communication  │        │
│  │       ↓        │              │       ↓         │        │
│  │  ┌──────────┐  │              │  ┌───────────┐  │        │
│  │  │  Neural  │  │              │  │  Server   │  │        │
│  │  │ Network  │  │              │  │  & Client │  │        │
│  │  └──────────┘  │              │  └───────────┘  │        │
│  │       ↓        │              │       ↓         │        │
│  │  Text Output   │              │  Data/Tools     │        │
│  │                │              │    Access       │        │
│  └────────────────┘              └─────────────────┘        │
│                                                              │
│  Role: Generate text            Role: Connect to resources  │
│  Type: AI Model                 Type: Protocol/Standard     │
│  Example: GPT-4, Claude         Example: MCP Servers        │
│                                                              │
└──────────────────────────────────────────────────────────────┘

Analogy

Think of it this way:

MCP vs AI Agents: Understanding the Distinction

Another common confusion is between MCP and AI Agents. Let’s break it down:

What is an AI Agent?

An AI Agent is an autonomous system that uses an LLM to perceive its environment, make decisions, and take actions to achieve specific goals.

Agent Characteristics:

How MCP Relates to Agents

MCP is the infrastructure that agents use to access tools and data. An agent leverages MCP to extend its capabilities.

┌────────────────────────────────────────────────────────┐
│              AI Agent Architecture                     │
├────────────────────────────────────────────────────────┤
│                                                        │
│  ┌──────────────────────────────────────────────┐     │
│  │            AI Agent (Orchestrator)           │     │
│  │  ┌────────────────────────────────────┐     │     │
│  │  │  1. Receives Goal/Task             │     │     │
│  │  └────────────────────────────────────┘     │     │
│  │               ↓                              │     │
│  │  ┌────────────────────────────────────┐     │     │
│  │  │  2. LLM Reasoning & Planning       │     │     │
│  │  │     "What steps do I need?"        │     │     │
│  │  └────────────────────────────────────┘     │     │
│  │               ↓                              │     │
│  │  ┌────────────────────────────────────┐     │     │
│  │  │  3. Uses MCP to Access Tools       │     │     │
│  │  │     - Database queries             │     │     │
│  │  │     - File operations              │     │     │
│  │  │     - API calls                    │     │     │
│  │  └────────────────────────────────────┘     │     │
│  │               ↓                              │     │
│  │  ┌────────────────────────────────────┐     │     │
│  │  │  4. Executes Actions               │     │     │
│  │  └────────────────────────────────────┘     │     │
│  │               ↓                              │     │
│  │  ┌────────────────────────────────────┐     │     │
│  │  │  5. Evaluates Results & Iterates   │     │     │
│  │  └────────────────────────────────────┘     │     │
│  └──────────────────────────────────────────────┘     │
│                                                        │
└────────────────────────────────────────────────────────┘

Key Differences

AspectMCPAI Agent
NatureProtocol/StandardAutonomous System
PurposeConnect LLMs to resourcesExecute complex tasks
IntelligenceNone (it’s just a protocol)Yes (uses LLM)
Decision MakingNoYes
AutonomyNoYes
ExampleMCP Server for PostgreSQLCustomer service chatbot

The Relationship

AI Agent = LLM (Brain) + MCP (Tools Access) + Orchestration Logic

┌───────────────────────────────────────────────┐
│                  AI Agent                     │
│                                               │
│  ┌─────────────────────────────────────────┐ │
│  │          Orchestration Layer            │ │
│  │  (Planning, Memory, Decision Making)    │ │
│  └─────────────────────────────────────────┘ │
│                     ↕                         │
│  ┌─────────────────────────────────────────┐ │
│  │         LLM (Reasoning Engine)          │ │
│  └─────────────────────────────────────────┘ │
│                     ↕                         │
│  ┌─────────────────────────────────────────┐ │
│  │    MCP Client (Tool Access Layer)       │ │
│  └─────────────────────────────────────────┘ │
│                     ↕                         │
└───────────────────────────────────────────────┘

    ┌─────────────────────────────────────┐
    │         MCP Servers                 │
    │  • Database Server                  │
    │  • File System Server               │
    │  • Web Search Server                │
    │  • Email Server                     │
    └─────────────────────────────────────┘

MCP vs APIs: What’s the Difference?

Many developers wonder how MCP differs from traditional REST APIs or GraphQL. Let’s clarify:

Traditional APIs

What They Are:

Example:

GET /api/users/123
Response: { "id": 123, "name": "John" }

MCP

What It Is:

Example:

LLM: "I need user information"
MCP: Discovers available tools
MCP: Calls appropriate user data tool
Returns: Contextually relevant data

Key Differences Table

AspectTraditional APIMCP
UsageHuman/developer specifies exact endpointsLLM decides which tools to use
DiscoveryManual documentation readingAutomatic tool discovery
FlexibilityFixed endpointsDynamic tool selection
IntelligenceNoneLLM-driven decisions
IntegrationCustom code per APIStandardized protocol
PurposeData exchangeContext and capability provision

When to Use What?

Use Traditional APIs When:

Use MCP When:

MCP vs RAG (Retrieval-Augmented Generation)

RAG is another popular technique in AI. How does it compare to MCP?

RAG (Retrieval-Augmented Generation)

What It Is:

How It Works:

┌────────────────────────────────────────┐
│         RAG Architecture               │
├────────────────────────────────────────┤
│                                        │
│  User Query: "What is our Q3 revenue?" │
│       ↓                                │
│  ┌──────────────────────────┐         │
│  │  Embedding Model          │         │
│  │  (Convert to vector)      │         │
│  └──────────────────────────┘         │
│       ↓                                │
│  ┌──────────────────────────┐         │
│  │  Vector Database Search   │         │
│  │  (Find relevant docs)     │         │
│  └──────────────────────────┘         │
│       ↓                                │
│  ┌──────────────────────────┐         │
│  │  Retrieved Documents      │         │
│  │  + Original Query         │         │
│  └──────────────────────────┘         │
│       ↓                                │
│  ┌──────────────────────────┐         │
│  │  LLM generates response   │         │
│  │  using retrieved context  │         │
│  └──────────────────────────┘         │
│                                        │
└────────────────────────────────────────┘

MCP

What It Is:

Key Differences

AspectRAGMCP
Primary PurposeProvide context/knowledgeProvide tools/capabilities
Action TypeRead-only (retrieval)Read and write (actions)
Data SourceUsually vector databasesAny data source or tool
ScopeKnowledge augmentationFull tool ecosystem
When UsedBefore generationDuring execution
Example”Find relevant docs""Query DB, send email, create file”

Can They Work Together?

Yes! MCP and RAG complement each other:

┌─────────────────────────────────────────────┐
│      Combined MCP + RAG System              │
├─────────────────────────────────────────────┤
│                                             │
│  User: "Analyze sales and create report"   │
│                                             │
│  Step 1: RAG retrieves historical context  │
│  ┌─────────────────────────────┐           │
│  │ Vector DB: Past reports,    │           │
│  │ sales analysis patterns     │           │
│  └─────────────────────────────┘           │
│                ↓                            │
│  Step 2: MCP executes tools                │
│  ┌─────────────────────────────┐           │
│  │ MCP Tool: Query sales DB    │           │
│  │ MCP Tool: Generate charts   │           │
│  │ MCP Tool: Create PDF        │           │
│  └─────────────────────────────┘           │
│                ↓                            │
│  Step 3: LLM combines both                 │
│  - Uses RAG context for insights           │
│  - Uses MCP data for current stats         │
│  - Creates comprehensive report            │
│                                             │
└─────────────────────────────────────────────┘

MCP vs Function Calling

Function calling is a feature offered by many LLM providers. How does MCP relate?

Function Calling (Native LLM Feature)

What It Is:

How It Works:

# OpenAI Function Calling Example
functions = [{
    "name": "get_weather",
    "description": "Get weather for a location",
    "parameters": {
        "location": {"type": "string"}
    }
}]

response = openai.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Weather in NYC?"}],
    functions=functions
)
# LLM responds: "Call get_weather with location='NYC'"

MCP

What It Is:

Key Differences

AspectFunction CallingMCP
StandardizationPer-provider (OpenAI, Anthropic, etc.)Universal protocol
ScopeFunction definitions onlyFunctions + Resources + Prompts
DiscoveryManually defined in codeDynamic server discovery
PortabilityTied to specific LLM providerWorks across providers
ArchitectureDirect function callsClient-server architecture
EcosystemClosedOpen, extensible

The Relationship

MCP builds on function calling:

┌────────────────────────────────────────────────┐
│        MCP Uses Function Calling               │
├────────────────────────────────────────────────┤
│                                                │
│  MCP Server                                    │
│  ┌──────────────────────────────┐             │
│  │ Tools:                       │             │
│  │ - query_database()           │             │
│  │ - send_email()               │             │
│  │ - create_file()              │             │
│  └──────────────────────────────┘             │
│           ↓                                    │
│  MCP Client translates to                     │
│  ┌──────────────────────────────┐             │
│  │ Function Calling Format:     │             │
│  │ {                            │             │
│  │   "name": "query_database",  │             │
│  │   "parameters": {...}        │             │
│  │ }                            │             │
│  └──────────────────────────────┘             │
│           ↓                                    │
│  LLM (with function calling)                  │
│  Decides which tool to use                    │
│                                                │
└────────────────────────────────────────────────┘

In essence: MCP provides the infrastructure and standardization, while function calling is the LLM capability that makes it work.

How MCP Works: Architecture Overview

MCP Architecture

MCP follows a client-server architecture:

┌──────────────────────────────────────────────────────────┐
│                  MCP Architecture                        │
├──────────────────────────────────────────────────────────┤
│                                                          │
│  ┌────────────────────┐                                 │
│  │   MCP Host/Client  │  (AI Application)               │
│  │   ┌────────────┐   │                                 │
│  │   │    LLM     │   │                                 │
│  │   └────────────┘   │                                 │
│  │         ↕          │                                 │
│  │   MCP Protocol     │                                 │
│  └────────┬───────────┘                                 │
│           │                                             │
│           ↓ JSON-RPC over stdio/SSE                     │
│                                                          │
│  ┌────────────────────────────────────────────────┐     │
│  │            MCP Servers (Multiple)              │     │
│  ├────────────────────────────────────────────────┤     │
│  │                                                │     │
│  │  ┌──────────┐  ┌──────────┐  ┌──────────┐     │     │
│  │  │Database  │  │   File   │  │   Web    │     │     │
│  │  │  Server  │  │  Server  │  │  Search  │     │     │
│  │  └─────┬────┘  └─────┬────┘  └─────┬────┘     │     │
│  │        │             │             │          │     │
│  └────────┼─────────────┼─────────────┼──────────┘     │
│           ↓             ↓             ↓                │
│  ┌────────────┐  ┌────────────┐  ┌────────────┐       │
│  │ PostgreSQL │  │File System │  │  Web APIs  │       │
│  │  Database  │  │   /docs    │  │            │       │
│  └────────────┘  └────────────┘  └────────────┘       │
│                                                          │
└──────────────────────────────────────────────────────────┘

Core Components

1. MCP Host (Client)

The application that wants to use AI capabilities with external resources:

2. MCP Server

A service that implements the MCP protocol to provide:

3. Transport Layer

Communication between client and server via:

MCP Message Flow

┌──────────────────────────────────────────────────────────────┐
│                   MCP Message Flow                           │
├──────────────────────────────────────────────────────────────┤
│                                                              │
│  User Query: "What's our revenue this quarter?"             │
│       ↓                                                      │
│  ┌──────────────────────────────────────┐                   │
│  │  Step 1: Client receives query       │                   │
│  │  LLM determines it needs data        │                   │
│  └──────────────────────────────────────┘                   │
│       ↓                                                      │
│  ┌──────────────────────────────────────┐                   │
│  │  Step 2: Client discovers tools      │                   │
│  │  Request: "List available tools"     │                   │
│  └──────────────────────────────────────┘                   │
│       ↓ JSON-RPC                                            │
│  ┌──────────────────────────────────────┐                   │
│  │  Step 3: Server responds              │                   │
│  │  "Tools: query_database, etc."       │                   │
│  └──────────────────────────────────────┘                   │
│       ↓                                                      │
│  ┌──────────────────────────────────────┐                   │
│  │  Step 4: LLM decides to use tool     │                   │
│  │  Call: query_database(               │                   │
│  │    "SELECT SUM(revenue)              │                   │
│  │     FROM sales                       │                   │
│  │     WHERE quarter='Q1'")             │                   │
│  └──────────────────────────────────────┘                   │
│       ↓ JSON-RPC                                            │
│  ┌──────────────────────────────────────┐                   │
│  │  Step 5: Server executes query       │                   │
│  │  Returns: {"revenue": 1500000}       │                   │
│  └──────────────────────────────────────┘                   │
│       ↓                                                      │
│  ┌──────────────────────────────────────┐                   │
│  │  Step 6: LLM formats response        │                   │
│  │  "Your Q1 revenue was $1.5M"         │                   │
│  └──────────────────────────────────────┘                   │
│       ↓                                                      │
│  User receives answer                                        │
│                                                              │
└──────────────────────────────────────────────────────────────┘

MCP’s Three Main Primitives

MCP servers expose three types of capabilities:

1. Resources

Read-only data sources that the LLM can access:

2. Tools

Functions that the LLM can execute to perform actions:

3. Prompts

Reusable prompt templates for common tasks:

Conceptual Example

MCP Server: "Sales Database"

Resources:
- sales_report.csv (Q1 2024 data)
- customer_list.json (Active customers)
- revenue_summary.txt (Monthly summaries)

Tools:
- query_sales(sql: string) → Execute SQL query
- export_report(format: string) → Generate report
- update_forecast(data: object) → Update predictions

Prompts:
- analyze_quarterly_performance
- identify_top_customers
- forecast_next_quarter

Real-World Use Cases

1. Data Analysis Agent

User Request: "Analyze customer churn"

Agent Workflow:
├─ Use PostgreSQL MCP Server
│  └─ Query customer data
├─ Use Python MCP Server  
│  └─ Run statistical analysis
├─ Use File System MCP Server
│  └─ Save visualizations
└─ Present insights to user

2. DevOps Assistant

User Request: "Check if the API is healthy"

Agent Workflow:
├─ Use Git MCP Server
│  └─ Check recent deployments
├─ Use Kubernetes MCP Server
│  └─ Check pod status
├─ Use Monitoring MCP Server
│  └─ Check error rates
└─ Report system status

3. Content Management Agent

User Request: "Update blog post with latest stats"

Agent Workflow:
├─ Use Database MCP Server
│  └─ Fetch latest statistics
├─ Use File System MCP Server
│  └─ Read current blog post
├─ LLM updates content
├─ Use File System MCP Server
│  └─ Save updated post
└─ Confirm completion

Conclusion

Understanding the Model Context Protocol (MCP) and how it relates to other AI concepts is crucial for anyone working with modern AI systems.

Quick Reference: MCP vs Everything

What It IsNaturePurposeIntelligence
MCPProtocol/StandardConnect LLMs to tools/dataNo (it’s infrastructure)
LLMAI ModelProcess & generate languageYes (trained model)
AI AgentAutonomous SystemExecute complex tasksYes (uses LLM)
APIInterfaceExchange dataNo
RAGTechniqueRetrieve contextual knowledgeNo (enhances LLM)
Function CallingLLM FeatureExecute predefined functionsPartial (LLM decides)

The Complete Picture

┌────────────────────────────────────────────────────┐
│        Modern AI Application Stack                 │
├────────────────────────────────────────────────────┤
│                                                    │
│  Layer 5: User Interface                          │
│  ┌──────────────────────────────────────────┐     │
│  │  Chat UI, Voice Interface, API           │     │
│  └──────────────────────────────────────────┘     │
│                     ↕                              │
│  Layer 4: AI Agent (Orchestration)                │
│  ┌──────────────────────────────────────────┐     │
│  │  Planning, Memory, Decision Making       │     │
│  └──────────────────────────────────────────┘     │
│                     ↕                              │
│  Layer 3: LLM (Intelligence)                      │
│  ┌──────────────────────────────────────────┐     │
│  │  GPT-4, Claude, Gemini                   │     │
│  │  + Function Calling                      │     │
│  │  + RAG (for knowledge)                   │     │
│  └──────────────────────────────────────────┘     │
│                     ↕                              │
│  Layer 2: MCP (Infrastructure)                    │
│  ┌──────────────────────────────────────────┐     │
│  │  Standardized Tool/Resource Access       │     │
│  └──────────────────────────────────────────┘     │
│                     ↕                              │
│  Layer 1: Data Sources & Services                 │
│  ┌──────────────────────────────────────────┐     │
│  │  Databases, APIs, Files, Cloud Services  │     │
│  └──────────────────────────────────────────┘     │
│                                                    │
└────────────────────────────────────────────────────┘

Key Takeaways

1. MCP is Infrastructure, Not Intelligence

2. MCP Complements Other Technologies

3. MCP Solves a Real Problem

4. The Hierarchy

AI Agent (Uses everything below)

LLM (The brain) + RAG (Knowledge) + Function Calling (Capability)

MCP (The standard protocol)

Tools, APIs, Databases (The resources)

Why This Matters

The emergence of MCP represents a maturation of the AI ecosystem. Just as:

MCP is standardizing how AI systems access external capabilities. This standardization will accelerate AI development and enable a richer ecosystem of interconnected AI applications.

Looking Forward

As MCP adoption grows, expect to see:

The Model Context Protocol is not just another tool—it’s a fundamental shift in how we build AI applications. Understanding it, and how it relates to LLMs, agents, APIs, and other concepts, is essential for anyone working in the AI space.


Additional Resources


Questions? Comments? Share your thoughts on MCP and how you’re using it in your projects!


Share this post on:

Previous Post
Perforce MCP Server: AI-Powered Version Control for AI Agents
Next Post
All Spring Annotations ASAP Cheat Sheet [Core+Boot][2023]